Added OpenSimplex2 and a fancy world generator

This commit is contained in:
OLEGSHA 2021-01-02 20:48:29 +03:00
parent ea56b642ee
commit cc031529a1
6 changed files with 1187 additions and 37 deletions

View File

@ -42,5 +42,5 @@ plugins {
* Google Guava * Google Guava
* Trove4j * Trove4j
* java-graphics/glm - GLM ported to Java. _Maven Central contains an outdated version, a custom repository used instead_ * java-graphics/glm - GLM ported to Java. _Maven Central contains an outdated version, a custom repository used instead_
* Apache Commons Math (_not currently used_) * OpenSimplex2
* log4j * log4j

View File

@ -0,0 +1,998 @@
package kdotjpg.opensimplex2.areagen;
/*
* This file has been modified in the following ways:
* - added a package declaration at line 1;
* - added missing @Override annotations;
* - commented out line 965 due to unused variables.
* The original version of this file can be found at
* https://raw.githubusercontent.com/KdotJPG/OpenSimplex2/master/java/areagen/OpenSimplex2S.java
*/
/**
* K.jpg's OpenSimplex 2, smooth variant ("SuperSimplex")
* With area generators.
*
* - 2D is standard simplex, modified to support larger kernels.
* Implemented using a lookup table.
* - 3D is "Re-oriented 8-point BCC noise" which constructs an
* isomorphic BCC lattice in a much different way than usual.
*
* Multiple versions of each function are provided. See the
* documentation above each, for more info.
*/
import java.util.Queue;
import java.util.LinkedList;
import java.util.Set;
import java.util.HashSet;
public class OpenSimplex2S {
private static final int PSIZE = 2048;
private static final int PMASK = 2047;
private short[] perm;
private Grad2[] permGrad2;
private Grad3[] permGrad3;
public OpenSimplex2S(long seed) {
perm = new short[PSIZE];
permGrad2 = new Grad2[PSIZE];
permGrad3 = new Grad3[PSIZE];
short[] source = new short[PSIZE];
for (short i = 0; i < PSIZE; i++)
source[i] = i;
for (int i = PSIZE - 1; i >= 0; i--) {
seed = seed * 6364136223846793005L + 1442695040888963407L;
int r = (int)((seed + 31) % (i + 1));
if (r < 0)
r += (i + 1);
perm[i] = source[r];
permGrad2[i] = GRADIENTS_2D[perm[i]];
permGrad3[i] = GRADIENTS_3D[perm[i]];
source[r] = source[i];
}
}
/*
* Traditional evaluators
*/
/**
* 2D SuperSimplex noise, standard lattice orientation.
*/
public double noise2(double x, double y) {
// Get points for A2* lattice
double s = 0.366025403784439 * (x + y);
double xs = x + s, ys = y + s;
return noise2_Base(xs, ys);
}
/**
* 2D SuperSimplex noise, with Y pointing down the main diagonal.
* Might be better for a 2D sandbox style game, where Y is vertical.
* Probably slightly less optimal for heightmaps or continent maps.
*/
public double noise2_XBeforeY(double x, double y) {
// Skew transform and rotation baked into one.
double xx = x * 0.7071067811865476;
double yy = y * 1.224744871380249;
return noise2_Base(yy + xx, yy - xx);
}
/**
* 2D SuperSimplex noise base.
* Lookup table implementation inspired by DigitalShadow.
*/
private double noise2_Base(double xs, double ys) {
double value = 0;
// Get base points and offsets
int xsb = fastFloor(xs), ysb = fastFloor(ys);
double xsi = xs - xsb, ysi = ys - ysb;
// Index to point list
int a = (int)(xsi + ysi);
int index =
(a << 2) |
(int)(xsi - ysi / 2 + 1 - a / 2.0) << 3 |
(int)(ysi - xsi / 2 + 1 - a / 2.0) << 4;
double ssi = (xsi + ysi) * -0.211324865405187;
double xi = xsi + ssi, yi = ysi + ssi;
// Point contributions
for (int i = 0; i < 4; i++) {
LatticePoint2D c = LOOKUP_2D[index + i];
double dx = xi + c.dx, dy = yi + c.dy;
double attn = 2.0 / 3.0 - dx * dx - dy * dy;
if (attn <= 0) continue;
int pxm = (xsb + c.xsv) & PMASK, pym = (ysb + c.ysv) & PMASK;
Grad2 grad = permGrad2[perm[pxm] ^ pym];
double extrapolation = grad.dx * dx + grad.dy * dy;
attn *= attn;
value += attn * attn * extrapolation;
}
return value;
}
/**
* 3D Re-oriented 8-point BCC noise, classic orientation
* Proper substitute for what 3D SuperSimplex would be,
* in light of Forbidden Formulae.
* Use noise3_XYBeforeZ or noise3_XZBeforeY instead, wherever appropriate.
*/
public double noise3_Classic(double x, double y, double z) {
// Re-orient the cubic lattices via rotation, to produce the expected look on cardinal planar slices.
// If texturing objects that don't tend to have cardinal plane faces, you could even remove this.
// Orthonormal rotation. Not a skew transform.
double r = (2.0 / 3.0) * (x + y + z);
double xr = r - x, yr = r - y, zr = r - z;
// Evaluate both lattices to form a BCC lattice.
return noise3_BCC(xr, yr, zr);
}
/**
* 3D Re-oriented 8-point BCC noise, with better visual isotropy in (X, Y).
* Recommended for 3D terrain and time-varied animations.
* The Z coordinate should always be the "different" coordinate in your use case.
* If Y is vertical in world coordinates, call noise3_XYBeforeZ(x, z, Y) or use noise3_XZBeforeY.
* If Z is vertical in world coordinates, call noise3_XYBeforeZ(x, y, Z).
* For a time varied animation, call noise3_XYBeforeZ(x, y, T).
*/
public double noise3_XYBeforeZ(double x, double y, double z) {
// Re-orient the cubic lattices without skewing, to make X and Y triangular like 2D.
// Orthonormal rotation. Not a skew transform.
double xy = x + y;
double s2 = xy * -0.211324865405187;
double zz = z * 0.577350269189626;
double xr = x + s2 - zz, yr = y + s2 - zz;
double zr = xy * 0.577350269189626 + zz;
// Evaluate both lattices to form a BCC lattice.
return noise3_BCC(xr, yr, zr);
}
/**
* 3D Re-oriented 8-point BCC noise, with better visual isotropy in (X, Z).
* Recommended for 3D terrain and time-varied animations.
* The Y coordinate should always be the "different" coordinate in your use case.
* If Y is vertical in world coordinates, call noise3_XZBeforeY(x, Y, z).
* If Z is vertical in world coordinates, call noise3_XZBeforeY(x, Z, y) or use noise3_XYBeforeZ.
* For a time varied animation, call noise3_XZBeforeY(x, T, y) or use noise3_XYBeforeZ.
*/
public double noise3_XZBeforeY(double x, double y, double z) {
// Re-orient the cubic lattices without skewing, to make X and Z triangular like 2D.
// Orthonormal rotation. Not a skew transform.
double xz = x + z;
double s2 = xz * -0.211324865405187;
double yy = y * 0.577350269189626;
double xr = x + s2 - yy; double zr = z + s2 - yy;
double yr = xz * 0.577350269189626 + yy;
// Evaluate both lattices to form a BCC lattice.
return noise3_BCC(xr, yr, zr);
}
/**
* Generate overlapping cubic lattices for 3D Re-oriented BCC noise.
* Lookup table implementation inspired by DigitalShadow.
* It was actually faster to narrow down the points in the loop itself,
* than to build up the index with enough info to isolate 8 points.
*/
private double noise3_BCC(double xr, double yr, double zr) {
// Get base and offsets inside cube of first lattice.
int xrb = fastFloor(xr), yrb = fastFloor(yr), zrb = fastFloor(zr);
double xri = xr - xrb, yri = yr - yrb, zri = zr - zrb;
// Identify which octant of the cube we're in. This determines which cell
// in the other cubic lattice we're in, and also narrows down one point on each.
int xht = (int)(xri + 0.5), yht = (int)(yri + 0.5), zht = (int)(zri + 0.5);
int index = (xht << 0) | (yht << 1) | (zht << 2);
// Point contributions
double value = 0;
LatticePoint3D c = LOOKUP_3D[index];
while (c != null) {
double dxr = xri + c.dxr, dyr = yri + c.dyr, dzr = zri + c.dzr;
double attn = 0.75 - dxr * dxr - dyr * dyr - dzr * dzr;
if (attn < 0) {
c = c.nextOnFailure;
} else {
int pxm = (xrb + c.xrv) & PMASK, pym = (yrb + c.yrv) & PMASK, pzm = (zrb + c.zrv) & PMASK;
Grad3 grad = permGrad3[perm[perm[pxm] ^ pym] ^ pzm];
double extrapolation = grad.dx * dxr + grad.dy * dyr + grad.dz * dzr;
attn *= attn;
value += attn * attn * extrapolation;
c = c.nextOnSuccess;
}
}
return value;
}
/*
* Area Generators
*/
/**
* Generate the 2D noise over a large area.
* Propagates by flood-fill instead of iterating over a range.
* Results may occasionally slightly exceed [-1, 1] due to the grid-snapped pre-generated kernel.
*/
public void generate2(GenerateContext2D context, double[][] buffer, int x0, int y0) {
int height = buffer.length;
int width = buffer[0].length;
generate2(context, buffer, x0, y0, width, height, 0, 0);
}
/**
* Generate the 2D noise over a large area.
* Propagates by flood-fill instead of iterating over a range.
* Results may occasionally slightly exceed [-1, 1] due to the grid-snapped pre-generated kernel.
*/
public void generate2(GenerateContext2D context, double[][] buffer, int x0, int y0, int width, int height, int skipX, int skipY) {
Queue<AreaGenLatticePoint2D> queue = new LinkedList<AreaGenLatticePoint2D>();
Set<AreaGenLatticePoint2D> seen = new HashSet<AreaGenLatticePoint2D>();
int scaledRadiusX = context.scaledRadiusX;
int scaledRadiusY = context.scaledRadiusY;
double[][] kernel = context.kernel;
int x0Skipped = x0 + skipX, y0Skipped = y0 + skipY;
// It seems that it's better for performance, to create a local copy.
// - Slightly faster than generating the kernel here.
// - Much faster than referencing it directly from the context object.
// - Much faster than computing the kernel equation every time.
// You can remove these lines if you find it's the opposite for you.
// You'll have to double the bounds again in GenerateContext2D
kernel = new double[scaledRadiusY * 2][/*scaledRadiusX * 2*/];
for (int yy = 0; yy < scaledRadiusY; yy++) {
kernel[2 * scaledRadiusY - yy - 1] = kernel[yy] = (double[]) context.kernel[yy].clone();
}
// Get started with one point/vertex.
// For some lattices, you might need to try a handful of points in the cell,
// or flip a couple of coordinates, to guarantee it or a neighbor contributes.
// For An* lattices, the base coordinate seems fine.
double x0f = x0Skipped * context.xFrequency; double y0f = y0Skipped * context.yFrequency;
double x0s = context.orientation.s00 * x0f + context.orientation.s01 * y0f;
double y0s = context.orientation.s10 * x0f + context.orientation.s11 * y0f;
int x0sb = fastFloor(x0s), y0sb = fastFloor(y0s);
AreaGenLatticePoint2D firstPoint = new AreaGenLatticePoint2D(context, x0sb, y0sb);
queue.add(firstPoint);
seen.add(firstPoint);
while (!queue.isEmpty()) {
AreaGenLatticePoint2D point = queue.remove();
int destPointX = point.destPointX;
int destPointY = point.destPointY;
// Prepare gradient vector
int pxm = point.xsv & PMASK, pym = point.ysv & PMASK;
Grad2 grad = context.orientation.gradients[perm[perm[pxm] ^ pym]];
double gx = grad.dx * context.xFrequency;
double gy = grad.dy * context.yFrequency;
double gOff = 0.5 * (gx + gy); // to correct for (0.5, 0.5)-offset kernel
// Contribution kernel bounds
int yy0 = destPointY - scaledRadiusY; if (yy0 < y0Skipped) yy0 = y0Skipped;
int yy1 = destPointY + scaledRadiusY; if (yy1 > y0 + height) yy1 = y0 + height;
// For each row of the contribution circle,
for (int yy = yy0; yy < yy1; yy++) {
int dy = yy - destPointY;
int ky = dy + scaledRadiusY;
// Set up bounds so we only loop over what we need to
int thisScaledRadiusX = context.kernelBounds[ky];
int xx0 = destPointX - thisScaledRadiusX; if (xx0 < x0Skipped) xx0 = x0Skipped;
int xx1 = destPointX + thisScaledRadiusX; if (xx1 > x0 + width) xx1 = x0 + width;
// For each point on that row
for (int xx = xx0; xx < xx1; xx++) {
int dx = xx - destPointX;
int kx = dx + scaledRadiusX;
// gOff accounts for our choice to offset the pre-generated kernel by (0.5, 0.5) to avoid the zero center.
// I found almost no difference in performance using gOff vs not (under 1ns diff per value on my system)
double extrapolation = gx * dx + gy * dy + gOff;
buffer[yy - y0][xx - x0] += kernel[ky][kx] * extrapolation;
}
}
// For each neighbor of the point
for (int i = 0; i < NEIGHBOR_MAP_2D.length; i++) {
AreaGenLatticePoint2D neighbor = new AreaGenLatticePoint2D(context,
point.xsv + NEIGHBOR_MAP_2D[i][0], point.ysv + NEIGHBOR_MAP_2D[i][1]);
// If it's in range of the buffer region and not seen before
if (neighbor.destPointX + scaledRadiusX >= x0Skipped && neighbor.destPointX - scaledRadiusX <= x0 + width - 1
&& neighbor.destPointY + scaledRadiusY >= y0Skipped && neighbor.destPointY - scaledRadiusY <= y0 + height - 1
&& !seen.contains(neighbor)) {
// Add it to the queue so we can process it at some point
queue.add(neighbor);
// Add it to the set so we don't add it to the queue again
seen.add(neighbor);
}
}
}
}
/**
* Generate the 3D noise over a large area/volume.
* Propagates by flood-fill instead of iterating over a range.
* Results may occasionally slightly exceed [-1, 1] due to the grid-snapped pre-generated kernel.
*/
public void generate3(GenerateContext3D context, double[][][] buffer, int x0, int y0, int z0) {
int depth = buffer.length;
int height = buffer[0].length;
int width = buffer[0][0].length;
generate3(context, buffer, x0, y0, z0, width, height, depth, 0, 0, 0);
}
/**
* Generate the 3D noise over a large area/volume.
* Propagates by flood-fill instead of iterating over a range.
* Results may occasionally slightly exceed [-1, 1] due to the grid-snapped pre-generated kernel.
*/
public void generate3(GenerateContext3D context, double[][][] buffer, int x0, int y0, int z0, int width, int height, int depth, int skipX, int skipY, int skipZ) {
Queue<AreaGenLatticePoint3D> queue = new LinkedList<AreaGenLatticePoint3D>();
Set<AreaGenLatticePoint3D> seen = new HashSet<AreaGenLatticePoint3D>();
int scaledRadiusX = context.scaledRadiusX;
int scaledRadiusY = context.scaledRadiusY;
int scaledRadiusZ = context.scaledRadiusZ;
double[][][] kernel = context.kernel;
int x0Skipped = x0 + skipX, y0Skipped = y0 + skipY, z0Skipped = z0 + skipZ;
// Quaternion multiplication for rotation.
// https://blog.molecular-matters.com/2013/05/24/a-faster-quaternion-vector-multiplication/
double qx = context.orientation.qx, qy = context.orientation.qy, qz = context.orientation.qz, qw = context.orientation.qw;
double x0f = x0Skipped * context.xFrequency, y0f = y0Skipped * context.yFrequency, z0f = z0Skipped * context.zFrequency;
double tx = 2 * (qy * z0f - qz * y0f);
double ty = 2 * (qz * x0f - qx * z0f);
double tz = 2 * (qx * y0f - qy * x0f);
double x0r = x0f + qw * tx + (qy * tz - qz * ty);
double y0r = y0f + qw * ty + (qz * tx - qx * tz);
double z0r = z0f + qw * tz + (qx * ty - qy * tx);
int x0rb = fastFloor(x0r), y0rb = fastFloor(y0r), z0rb = fastFloor(z0r);
AreaGenLatticePoint3D firstPoint = new AreaGenLatticePoint3D(context, x0rb, y0rb, z0rb, 0);
queue.add(firstPoint);
seen.add(firstPoint);
while (!queue.isEmpty()) {
AreaGenLatticePoint3D point = queue.remove();
int destPointX = point.destPointX;
int destPointY = point.destPointY;
int destPointZ = point.destPointZ;
// Prepare gradient vector
int pxm = point.xsv & PMASK, pym = point.ysv & PMASK, pzm = point.zsv & PMASK;
Grad3 grad = context.orientation.gradients[perm[perm[perm[pxm] ^ pym] ^ pzm]];
double gx = grad.dx * context.xFrequency;
double gy = grad.dy * context.yFrequency;
double gz = grad.dz * context.zFrequency;
double gOff = 0.5 * (gx + gy + gz); // to correct for (0.5, 0.5, 0.5)-offset kernel
// Contribution kernel bounds.
int zz0 = destPointZ - scaledRadiusZ; if (zz0 < z0Skipped) zz0 = z0Skipped;
int zz1 = destPointZ + scaledRadiusZ; if (zz1 > z0 + depth) zz1 = z0 + depth;
// For each x/y slice of the contribution sphere,
for (int zz = zz0; zz < zz1; zz++) {
int dz = zz - destPointZ;
int kz = dz + scaledRadiusZ;
// Set up bounds so we only loop over what we need to
int thisScaledRadiusY = context.kernelBoundsY[kz];
int yy0 = destPointY - thisScaledRadiusY; if (yy0 < y0Skipped) yy0 = y0Skipped;
int yy1 = destPointY + thisScaledRadiusY; if (yy1 > y0 + height) yy1 = y0 + height;
// For each row of the contribution circle,
for (int yy = yy0; yy < yy1; yy++) {
int dy = yy - destPointY;
int ky = dy + scaledRadiusY;
// Set up bounds so we only loop over what we need to
int thisScaledRadiusX = context.kernelBoundsX[kz][ky];
int xx0 = destPointX - thisScaledRadiusX; if (xx0 < x0Skipped) xx0 = x0Skipped;
int xx1 = destPointX + thisScaledRadiusX; if (xx1 > x0 + width) xx1 = x0 + width;
// For each point on that row
for (int xx = xx0; xx < xx1; xx++) {
int dx = xx - destPointX;
int kx = dx + scaledRadiusX;
// gOff accounts for our choice to offset the pre-generated kernel by (0.5, 0.5, 0.5) to avoid the zero center.
double extrapolation = gx * dx + gy * dy + gz * dz + gOff;
buffer[zz - z0][yy - y0][xx - x0] += kernel[kz][ky][kx] * extrapolation;
}
}
}
// For each neighbor of the point
for (int i = 0; i < NEIGHBOR_MAP_3D[0].length; i++) {
int l = point.lattice;
AreaGenLatticePoint3D neighbor = new AreaGenLatticePoint3D(context,
point.xsv + NEIGHBOR_MAP_3D[l][i][0], point.ysv + NEIGHBOR_MAP_3D[l][i][1], point.zsv + NEIGHBOR_MAP_3D[l][i][2], 1 ^ l);
// If it's in range of the buffer region and not seen before
if (neighbor.destPointX + scaledRadiusX >= x0Skipped && neighbor.destPointX - scaledRadiusX <= x0 + width - 1
&& neighbor.destPointY + scaledRadiusY >= y0Skipped && neighbor.destPointY - scaledRadiusY <= y0 + height - 1
&& neighbor.destPointZ + scaledRadiusZ >= z0Skipped && neighbor.destPointZ - scaledRadiusZ <= z0 + depth - 1
&& !seen.contains(neighbor)) {
// Add it to the queue so we can process it at some point
queue.add(neighbor);
// Add it to the set so we don't add it to the queue again
seen.add(neighbor);
}
}
}
}
/*
* Utility
*/
private static int fastFloor(double x) {
int xi = (int)x;
return x < xi ? xi - 1 : xi;
}
/*
* Definitions
*/
private static final LatticePoint2D[] LOOKUP_2D;
private static final LatticePoint3D[] LOOKUP_3D;
static {
LOOKUP_2D = new LatticePoint2D[8 * 4];
LOOKUP_3D = new LatticePoint3D[8];
for (int i = 0; i < 8; i++) {
int i1, j1, i2, j2;
if ((i & 1) == 0) {
if ((i & 2) == 0) { i1 = -1; j1 = 0; } else { i1 = 1; j1 = 0; }
if ((i & 4) == 0) { i2 = 0; j2 = -1; } else { i2 = 0; j2 = 1; }
} else {
if ((i & 2) != 0) { i1 = 2; j1 = 1; } else { i1 = 0; j1 = 1; }
if ((i & 4) != 0) { i2 = 1; j2 = 2; } else { i2 = 1; j2 = 0; }
}
LOOKUP_2D[i * 4 + 0] = new LatticePoint2D(0, 0);
LOOKUP_2D[i * 4 + 1] = new LatticePoint2D(1, 1);
LOOKUP_2D[i * 4 + 2] = new LatticePoint2D(i1, j1);
LOOKUP_2D[i * 4 + 3] = new LatticePoint2D(i2, j2);
}
for (int i = 0; i < 8; i++) {
int i1, j1, k1, i2, j2, k2;
i1 = (i >> 0) & 1; j1 = (i >> 1) & 1; k1 = (i >> 2) & 1;
i2 = i1 ^ 1; j2 = j1 ^ 1; k2 = k1 ^ 1;
// The two points within this octant, one from each of the two cubic half-lattices.
LatticePoint3D c0 = new LatticePoint3D(i1, j1, k1, 0);
LatticePoint3D c1 = new LatticePoint3D(i1 + i2, j1 + j2, k1 + k2, 1);
// (1, 0, 0) vs (0, 1, 1) away from octant.
LatticePoint3D c2 = new LatticePoint3D(i1 ^ 1, j1, k1, 0);
LatticePoint3D c3 = new LatticePoint3D(i1, j1 ^ 1, k1 ^ 1, 0);
// (1, 0, 0) vs (0, 1, 1) away from octant, on second half-lattice.
LatticePoint3D c4 = new LatticePoint3D(i1 + (i2 ^ 1), j1 + j2, k1 + k2, 1);
LatticePoint3D c5 = new LatticePoint3D(i1 + i2, j1 + (j2 ^ 1), k1 + (k2 ^ 1), 1);
// (0, 1, 0) vs (1, 0, 1) away from octant.
LatticePoint3D c6 = new LatticePoint3D(i1, j1 ^ 1, k1, 0);
LatticePoint3D c7 = new LatticePoint3D(i1 ^ 1, j1, k1 ^ 1, 0);
// (0, 1, 0) vs (1, 0, 1) away from octant, on second half-lattice.
LatticePoint3D c8 = new LatticePoint3D(i1 + i2, j1 + (j2 ^ 1), k1 + k2, 1);
LatticePoint3D c9 = new LatticePoint3D(i1 + (i2 ^ 1), j1 + j2, k1 + (k2 ^ 1), 1);
// (0, 0, 1) vs (1, 1, 0) away from octant.
LatticePoint3D cA = new LatticePoint3D(i1, j1, k1 ^ 1, 0);
LatticePoint3D cB = new LatticePoint3D(i1 ^ 1, j1 ^ 1, k1, 0);
// (0, 0, 1) vs (1, 1, 0) away from octant, on second half-lattice.
LatticePoint3D cC = new LatticePoint3D(i1 + i2, j1 + j2, k1 + (k2 ^ 1), 1);
LatticePoint3D cD = new LatticePoint3D(i1 + (i2 ^ 1), j1 + (j2 ^ 1), k1 + k2, 1);
// First two points are guaranteed.
c0.nextOnFailure = c0.nextOnSuccess = c1;
c1.nextOnFailure = c1.nextOnSuccess = c2;
// If c2 is in range, then we know c3 and c4 are not.
c2.nextOnFailure = c3; c2.nextOnSuccess = c5;
c3.nextOnFailure = c4; c3.nextOnSuccess = c4;
// If c4 is in range, then we know c5 is not.
c4.nextOnFailure = c5; c4.nextOnSuccess = c6;
c5.nextOnFailure = c5.nextOnSuccess = c6;
// If c6 is in range, then we know c7 and c8 are not.
c6.nextOnFailure = c7; c6.nextOnSuccess = c9;
c7.nextOnFailure = c8; c7.nextOnSuccess = c8;
// If c8 is in range, then we know c9 is not.
c8.nextOnFailure = c9; c8.nextOnSuccess = cA;
c9.nextOnFailure = c9.nextOnSuccess = cA;
// If cA is in range, then we know cB and cC are not.
cA.nextOnFailure = cB; cA.nextOnSuccess = cD;
cB.nextOnFailure = cC; cB.nextOnSuccess = cC;
// If cC is in range, then we know cD is not.
cC.nextOnFailure = cD; cC.nextOnSuccess = null;
cD.nextOnFailure = cD.nextOnSuccess = null;
LOOKUP_3D[i] = c0;
}
}
// Hexagon surrounding each vertex.
private static final int[][] NEIGHBOR_MAP_2D = {
{ 1, 0 }, { 1, 1 }, { 0, 1 }, { 0, -1 }, { -1, -1 }, { -1, 0 }
};
// Cube surrounding each vertex.
// Alternates between half-lattices.
private static final int[][][] NEIGHBOR_MAP_3D = {
{
{ 1024, 1024, 1024 }, { 1025, 1024, 1024 }, { 1024, 1025, 1024 }, { 1025, 1025, 1024 },
{ 1024, 1024, 1025 }, { 1025, 1024, 1025 }, { 1024, 1025, 1025 }, { 1025, 1025, 1025 }
},
{
{ -1024, -1024, -1024 }, { -1025, -1024, 1024 }, { -1024, -1025, -1024 }, { -1025, -1025, -1024 },
{ -1024, -1024, -1025 }, { -1025, -1024, -1025 }, { -1024, -1025, -1025 }, { -1025, -1025, 1025 }
},
};
private static class LatticePoint2D {
int xsv, ysv;
double dx, dy;
public LatticePoint2D(int xsv, int ysv) {
this.xsv = xsv; this.ysv = ysv;
double ssv = (xsv + ysv) * -0.211324865405187;
this.dx = -xsv - ssv;
this.dy = -ysv - ssv;
}
}
private static class LatticePoint3D {
public double dxr, dyr, dzr;
public int xrv, yrv, zrv;
LatticePoint3D nextOnFailure, nextOnSuccess;
public LatticePoint3D(int xrv, int yrv, int zrv, int lattice) {
this.dxr = -xrv + lattice * 0.5; this.dyr = -yrv + lattice * 0.5; this.dzr = -zrv + lattice * 0.5;
this.xrv = xrv + lattice * 1024; this.yrv = yrv + lattice * 1024; this.zrv = zrv + lattice * 1024;
}
}
private static class AreaGenLatticePoint2D {
int xsv, ysv;
int destPointX, destPointY;
public AreaGenLatticePoint2D(GenerateContext2D context, int xsv, int ysv) {
this.xsv = xsv; this.ysv = ysv;
//Matrix multiplication for inverse rotation. Simplex skew transforms have always been shorthand for matrices.
this.destPointX = (int)Math.ceil((context.orientation.t00 * xsv + context.orientation.t01 * ysv) * context.xFrequencyInverse);
this.destPointY = (int)Math.ceil((context.orientation.t10 * xsv + context.orientation.t11 * ysv) * context.yFrequencyInverse);
}
@Override
public int hashCode() {
return xsv * 7841 + ysv;
}
@Override
public boolean equals(Object obj) {
if (!(obj instanceof AreaGenLatticePoint2D)) return false;
AreaGenLatticePoint2D other = (AreaGenLatticePoint2D) obj;
return (other.xsv == this.xsv && other.ysv == this.ysv);
}
}
private static class AreaGenLatticePoint3D {
int xsv, ysv, zsv, lattice;
int destPointX, destPointY, destPointZ;
public AreaGenLatticePoint3D(GenerateContext3D context, int xsv, int ysv, int zsv, int lattice) {
this.xsv = xsv; this.ysv = ysv; this.zsv = zsv; this.lattice = lattice;
double xr = (xsv - lattice * 1024.5);
double yr = (ysv - lattice * 1024.5);
double zr = (zsv - lattice * 1024.5);
// Quaternion multiplication for inverse rotation.
// https://blog.molecular-matters.com/2013/05/24/a-faster-quaternion-vector-multiplication/
double qx = -context.orientation.qx, qy = -context.orientation.qy, qz = -context.orientation.qz, qw = context.orientation.qw;
double tx = 2 * (qy * zr - qz * yr);
double ty = 2 * (qz * xr - qx * zr);
double tz = 2 * (qx * yr - qy * xr);
double xrr = xr + qw * tx + (qy * tz - qz * ty);
double yrr = yr + qw * ty + (qz * tx - qx * tz);
double zrr = zr + qw * tz + (qx * ty - qy * tx);
this.destPointX = (int)Math.ceil(xrr * context.xFrequencyInverse);
this.destPointY = (int)Math.ceil(yrr * context.yFrequencyInverse);
this.destPointZ = (int)Math.ceil(zrr * context.zFrequencyInverse);
}
@Override
public int hashCode() {
return xsv * 2122193 + ysv * 2053 + zsv * 2 + lattice;
}
@Override
public boolean equals(Object obj) {
if (!(obj instanceof AreaGenLatticePoint3D)) return false;
AreaGenLatticePoint3D other = (AreaGenLatticePoint3D) obj;
return (other.xsv == this.xsv && other.ysv == this.ysv && other.zsv == this.zsv && other.lattice == this.lattice);
}
}
public static class GenerateContext2D {
double xFrequency;
double yFrequency;
double xFrequencyInverse;
double yFrequencyInverse;
int scaledRadiusX;
int scaledRadiusY;
double[][] kernel;
int[] kernelBounds;
LatticeOrientation2D orientation;
public GenerateContext2D(LatticeOrientation2D orientation, double xFrequency, double yFrequency, double amplitude) {
// These will be used by every call to generate
this.orientation = orientation;
this.xFrequency = xFrequency;
this.yFrequency = yFrequency;
this.xFrequencyInverse = 1.0 / xFrequency;
this.yFrequencyInverse = 1.0 / yFrequency;
double preciseScaledRadiusX = Math.sqrt(2.0 / 3.0) * xFrequencyInverse;
double preciseScaledRadiusY = Math.sqrt(2.0 / 3.0) * yFrequencyInverse;
// 0.25 because we offset center by 0.5
this.scaledRadiusX = (int)Math.ceil(preciseScaledRadiusX + 0.25);
this.scaledRadiusY = (int)Math.ceil(preciseScaledRadiusY + 0.25);
// So will these
kernel = new double[scaledRadiusY/* * 2*/][];
kernelBounds = new int[scaledRadiusY * 2];
for (int yy = 0; yy < scaledRadiusY * 2; yy++) {
// Pre-generate boundary of circle
kernelBounds[yy] = (int)Math.ceil(
Math.sqrt(1.0
- (yy + 0.5 - scaledRadiusY) * (yy + 0.5 - scaledRadiusY) / (scaledRadiusY * scaledRadiusY)
) * scaledRadiusX);
if (yy < scaledRadiusY) {
kernel[yy] = new double[scaledRadiusX * 2];
// Pre-generate kernel
for (int xx = 0; xx < scaledRadiusX * 2; xx++) {
double dx = (xx + 0.5 - scaledRadiusX) * xFrequency;
double dy = (yy + 0.5 - scaledRadiusY) * yFrequency;
double attn = (2.0 / 3.0) - dx * dx - dy * dy;
if (attn > 0) {
attn *= attn;
kernel[yy][xx] = attn * attn * amplitude;
} else {
kernel[yy][xx] = 0.0;
}
}
} /* else kernel[yy] = kernel[2 * scaledRadiusY - yy - 1];*/
}
}
}
public static class GenerateContext3D {
double xFrequency;
double yFrequency;
double zFrequency;
double xFrequencyInverse;
double yFrequencyInverse;
double zFrequencyInverse;
int scaledRadiusX;
int scaledRadiusY;
int scaledRadiusZ;
double[][][] kernel;
int[] kernelBoundsY;
int[][] kernelBoundsX;
LatticeOrientation3D orientation;
public GenerateContext3D(LatticeOrientation3D orientation, double xFrequency, double yFrequency, double zFrequency, double amplitude) {
// These will be used by every call to generate
this.orientation = orientation;
this.xFrequency = xFrequency;
this.yFrequency = yFrequency;
this.zFrequency = zFrequency;
this.xFrequencyInverse = 1.0 / xFrequency;
this.yFrequencyInverse = 1.0 / yFrequency;
this.zFrequencyInverse = 1.0 / zFrequency;
double preciseScaledRadiusX = Math.sqrt(0.75) * xFrequencyInverse;
double preciseScaledRadiusY = Math.sqrt(0.75) * yFrequencyInverse;
double preciseScaledRadiusZ = Math.sqrt(0.75) * zFrequencyInverse;
// 0.25 because we offset center by 0.5
this.scaledRadiusX = (int)Math.ceil(preciseScaledRadiusX + 0.25);
this.scaledRadiusY = (int)Math.ceil(preciseScaledRadiusY + 0.25);
this.scaledRadiusZ = (int)Math.ceil(preciseScaledRadiusZ + 0.25);
// So will these
kernel = new double[scaledRadiusZ * 2][][];
kernelBoundsY = new int[scaledRadiusZ * 2];
kernelBoundsX = new int[scaledRadiusZ * 2][];
for (int zz = 0; zz < scaledRadiusZ * 2; zz++) {
// Pre-generate boundary of sphere
kernelBoundsY[zz] = (int)Math.ceil(
Math.sqrt(1.0 - (zz + 0.5 - scaledRadiusZ) * (zz + 0.5 - scaledRadiusZ)
/ (scaledRadiusZ * scaledRadiusZ)) * scaledRadiusY);
if (zz < scaledRadiusZ) {
kernel[zz] = new double[scaledRadiusY * 2][];
kernelBoundsX[zz] = new int[scaledRadiusY * 2];
} else {
kernel[zz] = kernel[2 * scaledRadiusZ - zz - 1];
kernelBoundsX[zz] = kernelBoundsX[2 * scaledRadiusZ - zz - 1];
}
if (zz < scaledRadiusZ) {
for (int yy = 0; yy < scaledRadiusY * 2; yy++) {
// Pre-generate boundary of sphere
kernelBoundsX[zz][yy] = (int)Math.ceil(
Math.sqrt(1.0
- (yy + 0.5 - scaledRadiusY) * (yy + 0.5 - scaledRadiusY) / (scaledRadiusY * scaledRadiusY)
- (zz + 0.5 - scaledRadiusZ) * (zz + 0.5 - scaledRadiusZ) / (scaledRadiusZ * scaledRadiusZ)
) * scaledRadiusX);
if (yy < scaledRadiusY) {
kernel[zz][yy] = new double[scaledRadiusX * 2];
// Pre-generate kernel
for (int xx = 0; xx < scaledRadiusX * 2; xx++) {
double dx = (xx + 0.5 - scaledRadiusX) * xFrequency;
double dy = (yy + 0.5 - scaledRadiusY) * yFrequency;
double dz = (zz + 0.5 - scaledRadiusZ) * zFrequency;
double attn = 0.75 - dx * dx - dy * dy - dz * dz;
if (attn > 0) {
attn *= attn;
kernel[zz][yy][xx] = attn * attn * amplitude;
} else {
kernel[zz][yy][xx] = 0.0;
}
}
} else kernel[zz][yy] = kernel[zz][2 * scaledRadiusY - yy - 1];
}
}
}
}
}
public enum LatticeOrientation2D {
// Simplex skew transforms have always been shorthand for the matrices they represent.
// But when we bake the rotation into the skew transform, we need to use the general form.
Standard(GRADIENTS_2D,
1.366025403784439, 0.366025403784439, 0.366025403784439, 1.366025403784439,
0.788675134594813, -0.211324865405187, -0.211324865405187, 0.788675134594813),
XBeforeY(GRADIENTS_2D_X_BEFORE_Y,
0.7071067811865476, 1.224744871380249, -0.7071067811865476, 1.224744871380249,
0.7071067811865476, -0.7071067811865476, 0.40824829046764305, 0.40824829046764305);
Grad2[] gradients;
double s00, s01, s10, s11;
double t00, t01, t10, t11;
private LatticeOrientation2D(Grad2[] gradients,
double s00, double s01, double s10, double s11,
double t00, double t01, double t10, double t11) {
this.gradients = gradients;
this.s00 = s00; this.s01 = s01; this.s10 = s10; this.s11 = s11;
this.t00 = t00; this.t01 = t01; this.t10 = t10; this.t11 = t11;
}
}
public enum LatticeOrientation3D {
// Quaternions for 3D. Could use matrices, but I already wrote this code before I moved them into here.
Classic(GRADIENTS_3D_CLASSIC, 0.577350269189626, 0.577350269189626, 0.577350269189626, 0),
XYBeforeZ(GRADIENTS_3D_XY_BEFORE_Z, 0.3250575836718682, -0.3250575836718682, 0, 0.8880738339771154),
XZBeforeY(GRADIENTS_3D_XZ_BEFORE_Y, -0.3250575836718682, 0, 0.3250575836718682, 0.8880738339771154);
Grad3[] gradients;
double qx, qy, qz, qw;
private LatticeOrientation3D(Grad3[] gradients, double qx, double qy, double qz, double qw) {
this.gradients = gradients;
this.qx = qx; this.qy = qy; this.qz = qz; this.qw = qw;
}
}
/*
* Gradients
*/
public static class Grad2 {
double dx, dy;
public Grad2(double dx, double dy) {
this.dx = dx; this.dy = dy;
}
}
public static class Grad3 {
double dx, dy, dz;
public Grad3(double dx, double dy, double dz) {
this.dx = dx; this.dy = dy; this.dz = dz;
}
}
public static final double N2 = 0.05481866495625118;
public static final double N3 = 0.2781926117527186;
private static final Grad2[] GRADIENTS_2D, GRADIENTS_2D_X_BEFORE_Y;
private static final Grad3[] GRADIENTS_3D, GRADIENTS_3D_CLASSIC, GRADIENTS_3D_XY_BEFORE_Z, GRADIENTS_3D_XZ_BEFORE_Y;
static {
GRADIENTS_2D = new Grad2[PSIZE];
GRADIENTS_2D_X_BEFORE_Y = new Grad2[PSIZE];
Grad2[] grad2 = {
new Grad2( 0.130526192220052, 0.99144486137381),
new Grad2( 0.38268343236509, 0.923879532511287),
new Grad2( 0.608761429008721, 0.793353340291235),
new Grad2( 0.793353340291235, 0.608761429008721),
new Grad2( 0.923879532511287, 0.38268343236509),
new Grad2( 0.99144486137381, 0.130526192220051),
new Grad2( 0.99144486137381, -0.130526192220051),
new Grad2( 0.923879532511287, -0.38268343236509),
new Grad2( 0.793353340291235, -0.60876142900872),
new Grad2( 0.608761429008721, -0.793353340291235),
new Grad2( 0.38268343236509, -0.923879532511287),
new Grad2( 0.130526192220052, -0.99144486137381),
new Grad2(-0.130526192220052, -0.99144486137381),
new Grad2(-0.38268343236509, -0.923879532511287),
new Grad2(-0.608761429008721, -0.793353340291235),
new Grad2(-0.793353340291235, -0.608761429008721),
new Grad2(-0.923879532511287, -0.38268343236509),
new Grad2(-0.99144486137381, -0.130526192220052),
new Grad2(-0.99144486137381, 0.130526192220051),
new Grad2(-0.923879532511287, 0.38268343236509),
new Grad2(-0.793353340291235, 0.608761429008721),
new Grad2(-0.608761429008721, 0.793353340291235),
new Grad2(-0.38268343236509, 0.923879532511287),
new Grad2(-0.130526192220052, 0.99144486137381)
};
Grad2[] grad2XBeforeY = new Grad2[grad2.length];
for (int i = 0; i < grad2.length; i++) {
grad2[i].dx /= N2; grad2[i].dy /= N2;
// Unrotated gradients for XBeforeY 2D
double xx = grad2[i].dx * 0.7071067811865476;
double yy = grad2[i].dy * 0.7071067811865476;
grad2XBeforeY[i] = new Grad2(xx - yy, xx + yy);
}
for (int i = 0; i < PSIZE; i++) {
GRADIENTS_2D[i] = grad2[i % grad2.length];
GRADIENTS_2D_X_BEFORE_Y[i] = grad2XBeforeY[i % grad2XBeforeY.length];
}
GRADIENTS_3D = new Grad3[PSIZE];
GRADIENTS_3D_CLASSIC = new Grad3[PSIZE];
GRADIENTS_3D_XY_BEFORE_Z = new Grad3[PSIZE];
GRADIENTS_3D_XZ_BEFORE_Y = new Grad3[PSIZE];
Grad3[] grad3 = {
new Grad3(-2.22474487139, -2.22474487139, -1.0),
new Grad3(-2.22474487139, -2.22474487139, 1.0),
new Grad3(-3.0862664687972017, -1.1721513422464978, 0.0),
new Grad3(-1.1721513422464978, -3.0862664687972017, 0.0),
new Grad3(-2.22474487139, -1.0, -2.22474487139),
new Grad3(-2.22474487139, 1.0, -2.22474487139),
new Grad3(-1.1721513422464978, 0.0, -3.0862664687972017),
new Grad3(-3.0862664687972017, 0.0, -1.1721513422464978),
new Grad3(-2.22474487139, -1.0, 2.22474487139),
new Grad3(-2.22474487139, 1.0, 2.22474487139),
new Grad3(-3.0862664687972017, 0.0, 1.1721513422464978),
new Grad3(-1.1721513422464978, 0.0, 3.0862664687972017),
new Grad3(-2.22474487139, 2.22474487139, -1.0),
new Grad3(-2.22474487139, 2.22474487139, 1.0),
new Grad3(-1.1721513422464978, 3.0862664687972017, 0.0),
new Grad3(-3.0862664687972017, 1.1721513422464978, 0.0),
new Grad3(-1.0, -2.22474487139, -2.22474487139),
new Grad3( 1.0, -2.22474487139, -2.22474487139),
new Grad3( 0.0, -3.0862664687972017, -1.1721513422464978),
new Grad3( 0.0, -1.1721513422464978, -3.0862664687972017),
new Grad3(-1.0, -2.22474487139, 2.22474487139),
new Grad3( 1.0, -2.22474487139, 2.22474487139),
new Grad3( 0.0, -1.1721513422464978, 3.0862664687972017),
new Grad3( 0.0, -3.0862664687972017, 1.1721513422464978),
new Grad3(-1.0, 2.22474487139, -2.22474487139),
new Grad3( 1.0, 2.22474487139, -2.22474487139),
new Grad3( 0.0, 1.1721513422464978, -3.0862664687972017),
new Grad3( 0.0, 3.0862664687972017, -1.1721513422464978),
new Grad3(-1.0, 2.22474487139, 2.22474487139),
new Grad3( 1.0, 2.22474487139, 2.22474487139),
new Grad3( 0.0, 3.0862664687972017, 1.1721513422464978),
new Grad3( 0.0, 1.1721513422464978, 3.0862664687972017),
new Grad3( 2.22474487139, -2.22474487139, -1.0),
new Grad3( 2.22474487139, -2.22474487139, 1.0),
new Grad3( 1.1721513422464978, -3.0862664687972017, 0.0),
new Grad3( 3.0862664687972017, -1.1721513422464978, 0.0),
new Grad3( 2.22474487139, -1.0, -2.22474487139),
new Grad3( 2.22474487139, 1.0, -2.22474487139),
new Grad3( 3.0862664687972017, 0.0, -1.1721513422464978),
new Grad3( 1.1721513422464978, 0.0, -3.0862664687972017),
new Grad3( 2.22474487139, -1.0, 2.22474487139),
new Grad3( 2.22474487139, 1.0, 2.22474487139),
new Grad3( 1.1721513422464978, 0.0, 3.0862664687972017),
new Grad3( 3.0862664687972017, 0.0, 1.1721513422464978),
new Grad3( 2.22474487139, 2.22474487139, -1.0),
new Grad3( 2.22474487139, 2.22474487139, 1.0),
new Grad3( 3.0862664687972017, 1.1721513422464978, 0.0),
new Grad3( 1.1721513422464978, 3.0862664687972017, 0.0)
};
Grad3[] grad3Classic = new Grad3[grad3.length];
Grad3[] grad3XYBeforeZ = new Grad3[grad3.length];
Grad3[] grad3XZBeforeY = new Grad3[grad3.length];
for (int i = 0; i < grad3.length; i++) {
grad3[i].dx /= N3; grad3[i].dy /= N3; grad3[i].dz /= N3;
double gxr = grad3[i].dx, gyr = grad3[i].dy, gzr = grad3[i].dz;
// Unrotated gradients for classic 3D
double grr = (2.0 / 3.0) * (gxr + gyr + gzr);
// double dx = grr - gxr, dy = grr - gyr, dz = grr - gzr;
grad3Classic[i] = new Grad3( grr - gxr, grr - gyr, grr - gzr );
// Unrotated gradients for XYBeforeZ 3D
double s2 = (gxr + gyr) * -0.211324865405187;
double zz = gzr * 0.577350269189626;
grad3XYBeforeZ[i] = new Grad3( gxr + s2 + zz, gyr + s2 + zz, (gzr - gxr - gyr) * 0.577350269189626 );
// Unrotated gradients for plane-first 3D
s2 = (gxr + gzr) * -0.211324865405187;
double yy = gyr * 0.577350269189626;
grad3XZBeforeY[i] = new Grad3( gxr + s2 + yy, (gyr - gxr - gzr) * 0.577350269189626, gzr + s2 + yy );
}
for (int i = 0; i < PSIZE; i++) {
GRADIENTS_3D[i] = grad3[i % grad3.length];
GRADIENTS_3D_CLASSIC[i] = grad3Classic[i % grad3Classic.length];
GRADIENTS_3D_XY_BEFORE_Z[i] = grad3XYBeforeZ[i % grad3XYBeforeZ.length];
GRADIENTS_3D_XZ_BEFORE_Y[i] = grad3XZBeforeY[i % grad3XZBeforeY.length];
}
}
}

View File

@ -30,7 +30,7 @@ public class PlayerManager {
this.players.add(player); this.players.add(player);
} }
private static final Vec3i SPAWN = new Vec3i(8, 8, 20); private static final Vec3i SPAWN = new Vec3i(8, 8, 900);
public EntityData conjurePlayerEntity(String login) { public EntityData conjurePlayerEntity(String login) {
// TODO Live up to the name // TODO Live up to the name

View File

@ -21,6 +21,8 @@ import java.util.ArrayList;
import java.util.Collection; import java.util.Collection;
import java.util.Locale; import java.util.Locale;
import glm.vec._3.Vec3;
import ru.windcorp.progressia.client.Client;
import ru.windcorp.progressia.client.ClientState; import ru.windcorp.progressia.client.ClientState;
import ru.windcorp.progressia.client.graphics.backend.GraphicsInterface; import ru.windcorp.progressia.client.graphics.backend.GraphicsInterface;
import ru.windcorp.progressia.client.graphics.font.Font; import ru.windcorp.progressia.client.graphics.font.Font;
@ -81,6 +83,12 @@ public class LayerTestGUI extends GUILayer {
128 128
)); ));
panel.addChild(new DynamicLabel(
"PosDisplay", new Font().withColor(0x37A3E6).deriveShadow(),
LayerTestGUI::getPos,
128
));
panel.getChildren().forEach(c -> { panel.getChildren().forEach(c -> {
if (c instanceof Label) { if (c instanceof Label) {
labels.add((Label) c); labels.add((Label) c);
@ -151,6 +159,14 @@ public class LayerTestGUI extends GUILayer {
return String.format(Locale.US, "TPS: %5.1f", TPS_RECORD.update(server.getTPS())); return String.format(Locale.US, "TPS: %5.1f", TPS_RECORD.update(server.getTPS()));
} }
private static String getPos() {
Client client = ClientState.getInstance();
if (client == null) return "Pos: n/a";
Vec3 pos = client.getCamera().getLastAnchorPosition();
return String.format(Locale.US, "Pos: %+7.1f %+7.1f %+7.1f", pos.x, pos.y, pos.z);
}
// private static class DebugComponent extends Component { // private static class DebugComponent extends Component {
// private final int color; // private final int color;
// //

View File

@ -0,0 +1,126 @@
package ru.windcorp.progressia.test.gen;
import kdotjpg.opensimplex2.areagen.OpenSimplex2S;
import ru.windcorp.progressia.server.world.WorldLogic;
class TestTerrainGenerator {
@FunctionalInterface
private interface Func2D {
double compute(double x, double y);
}
private final OpenSimplex2S noise;
private final Func2D shape;
public TestTerrainGenerator(TestWorldGenerator testWorldGenerator, WorldLogic world) {
this.noise = new OpenSimplex2S("We're getting somewhere".hashCode());
Func2D plainsHeight =
tweak(
octaves(
tweak(primitive(), 0.01, 0.5),
2, 3
),
1, 0.2, 0.2
);
Func2D mountainsHeight =
tweak(
octaves(
ridge(tweak(primitive(), 0.01, 1)),
2, 1.5, 12
),
1, 3
);
Func2D mountainousity =
tweak(
octaves(
tweak(primitive(), 0.007, 1),
2, 3
),
1, 1, -0.25
);
shape = tweak(
add(multiply(squash(mountainousity, 10), mountainsHeight), plainsHeight),
0.001, 1000, 0
);
}
public void compute(int startX, int startY, double[][] heightMap, double[][] slopeMap) {
for (int x = 0; x < heightMap.length; ++x) {
for (int y = 0; y < heightMap.length; ++y) {
heightMap[x][y] = shape.compute(x + startX, y + startY);
slopeMap[x][y] = computeSlope(shape, x + startX, y + startY, heightMap[x][y]);
}
}
}
private double computeSlope(Func2D f, double x0, double y0, double f0) {
double di = 0.5;
double dfdx = (f.compute(x0 + di, y0) - f0) / di;
double dfdy = (f.compute(x0, y0 + di) - f0) / di;
return Math.hypot(dfdx, dfdy);
}
/*
* Utility functions
*/
private Func2D primitive() {
return noise::noise2;
}
private Func2D add(Func2D a, Func2D b) {
return (x, y) -> a.compute(x, y) + b.compute(x, y);
}
private Func2D multiply(Func2D a, Func2D b) {
return (x, y) -> a.compute(x, y) * b.compute(x, y);
}
private Func2D tweak(Func2D f, double scale, double amplitude, double bias) {
return (x, y) -> f.compute(x * scale, y * scale) * amplitude + bias;
}
private Func2D tweak(Func2D f, double scale, double amplitude) {
return tweak(f, scale, amplitude, 0);
}
private Func2D octaves(Func2D f, double scaleFactor, double amplitudeFactor, int octaves) {
return (x, y) -> {
double result = 0;
double scale = 1;
double amplitude = 1;
for (int i = 0; i < octaves; ++i) {
result += f.compute(x * scale, y * scale) * amplitude;
scale *= scaleFactor;
amplitude /= amplitudeFactor;
}
return result;
};
}
private Func2D octaves(Func2D f, double factor, int octaves) {
return octaves(f, factor, factor, octaves);
}
private Func2D squash(Func2D f, double slope) {
return (x, y) -> 1 / (1 + Math.exp(-slope * f.compute(x, y)));
}
private Func2D ridge(Func2D f) {
return (x, y) -> {
double result = 1 - Math.abs(f.compute(x, y));
return result * result;
};
}
}

View File

@ -23,8 +23,11 @@ import ru.windcorp.progressia.server.world.generation.AbstractWorldGenerator;
public class TestWorldGenerator extends AbstractWorldGenerator<Boolean> { public class TestWorldGenerator extends AbstractWorldGenerator<Boolean> {
private final TestTerrainGenerator terrainGen;
public TestWorldGenerator(WorldLogic world) { public TestWorldGenerator(WorldLogic world) {
super("Test:WorldGenerator", Boolean.class); super("Test:WorldGenerator", Boolean.class);
this.terrainGen = new TestTerrainGenerator(this, world);
world.getData().addListener(new WorldDataListener() { world.getData().addListener(new WorldDataListener() {
@Override @Override
@ -66,28 +69,26 @@ public class TestWorldGenerator extends AbstractWorldGenerator<Boolean> {
BlockData stone = BlockDataRegistry.getInstance().get("Test:Stone"); BlockData stone = BlockDataRegistry.getInstance().get("Test:Stone");
BlockData air = BlockDataRegistry.getInstance().get("Test:Air"); BlockData air = BlockDataRegistry.getInstance().get("Test:Air");
final float maxHeight = 32; double[][] heightMap = new double[bpc][bpc];
final float rho = 2000; double[][] gradMap = new double[bpc][bpc];
int[][] heightMap = new int[bpc][bpc]; int startX = Coordinates.getInWorld(chunk.getX(), 0);
int startY = Coordinates.getInWorld(chunk.getY(), 0);
int startZ = Coordinates.getInWorld(chunk.getZ(), 0);
for (int yic = 0; yic < heightMap.length; ++yic) { terrainGen.compute(startX, startY, heightMap, gradMap);
int yiw = Coordinates.getInWorld(chunk.getY(), yic);
for (int xic = 0; xic < heightMap[yic].length; ++xic) {
int xiw = Coordinates.getInWorld(chunk.getX(), xic);
int rsq = (xiw*xiw + yiw*yiw);
heightMap[xic][yic] = (int) (rsq / (rho + rsq) * maxHeight) - chunk.getZ()*bpc;
}
}
VectorUtil.iterateCuboid(0, 0, 0, bpc, bpc, bpc, pos -> { VectorUtil.iterateCuboid(0, 0, 0, bpc, bpc, bpc, pos -> {
int layer = pos.z - heightMap[pos.x][pos.y]; double layer = pos.z - heightMap[pos.x][pos.y] + startZ;
if (layer < -4) { if (layer < -4) {
chunk.setBlock(pos, stone, false); chunk.setBlock(pos, stone, false);
} else if (layer < 0) { } else if (layer < 0) {
chunk.setBlock(pos, dirt, false); if (gradMap[pos.x][pos.y] > 0.3) {
chunk.setBlock(pos, stone, false);
} else {
chunk.setBlock(pos, dirt, false);
}
} else { } else {
chunk.setBlock(pos, air, false); chunk.setBlock(pos, air, false);
} }
@ -140,6 +141,7 @@ public class TestWorldGenerator extends AbstractWorldGenerator<Boolean> {
assert chunk != null : "Something went wrong when populating chunk at (" + chunkPos.x + "; " + chunkPos.y + "; " + chunkPos.z + ")"; assert chunk != null : "Something went wrong when populating chunk at (" + chunkPos.x + "; " + chunkPos.y + "; " + chunkPos.z + ")";
BlockData air = BlockDataRegistry.getInstance().get("Test:Air"); BlockData air = BlockDataRegistry.getInstance().get("Test:Air");
BlockData dirt = BlockDataRegistry.getInstance().get("Test:Dirt");
Vec3i biw = new Vec3i(); Vec3i biw = new Vec3i();
@ -159,7 +161,7 @@ public class TestWorldGenerator extends AbstractWorldGenerator<Boolean> {
if (biw.z == maxZ) continue; if (biw.z == maxZ) continue;
if (biw.z < minZ) continue; if (biw.z < minZ) continue;
addTiles(chunk, biw, world, random); addTiles(chunk, biw, world, random, world.getBlock(biw) == dirt);
} }
} }
@ -167,9 +169,9 @@ public class TestWorldGenerator extends AbstractWorldGenerator<Boolean> {
chunk.setGenerationHint(true); chunk.setGenerationHint(true);
} }
private void addTiles(ChunkData chunk, Vec3i biw, WorldData world, Random random) { private void addTiles(ChunkData chunk, Vec3i biw, WorldData world, Random random, boolean isDirt) {
addGrass(chunk, biw, world, random); if (isDirt) addGrass(chunk, biw, world, random);
addDecor(chunk, biw, world, random); addDecor(chunk, biw, world, random, isDirt);
} }
private void addGrass(ChunkData chunk, Vec3i biw, WorldData world, Random random) { private void addGrass(ChunkData chunk, Vec3i biw, WorldData world, Random random) {
@ -191,23 +193,31 @@ public class TestWorldGenerator extends AbstractWorldGenerator<Boolean> {
} }
} }
private void addDecor(ChunkData chunk, Vec3i biw, WorldData world, Random random) { private void addDecor(ChunkData chunk, Vec3i biw, WorldData world, Random random, boolean isDirt) {
if (random.nextInt(8) == 0) { if (isDirt) {
world.getTiles(biw, BlockFace.TOP).addFarthest( if (random.nextInt(8) == 0) {
TileDataRegistry.getInstance().get("Test:Sand") world.getTiles(biw, BlockFace.TOP).addFarthest(
); TileDataRegistry.getInstance().get("Test:Sand")
} );
}
if (random.nextInt(8) == 0) {
world.getTiles(biw, BlockFace.TOP).addFarthest( if (random.nextInt(8) == 0) {
TileDataRegistry.getInstance().get("Test:Stones") world.getTiles(biw, BlockFace.TOP).addFarthest(
); TileDataRegistry.getInstance().get("Test:Stones")
} );
}
if (random.nextInt(8) == 0) {
world.getTiles(biw, BlockFace.TOP).addFarthest( if (random.nextInt(8) == 0) {
TileDataRegistry.getInstance().get("Test:YellowFlowers") world.getTiles(biw, BlockFace.TOP).addFarthest(
); TileDataRegistry.getInstance().get("Test:YellowFlowers")
);
}
} else {
if (random.nextInt(2) == 0) {
world.getTiles(biw, BlockFace.TOP).addFarthest(
TileDataRegistry.getInstance().get("Test:Stones")
);
}
} }
} }